

Module spec template 2023-24

Module specification

When printed this becomes an uncontrolled document. Please access the Module

Directory for the most up to date version by clicking on the following link: Module

directory

Module Code CONL711

Module Title Secure Software Development

Level 7

Credit value 15

Faculty FACE

HECoS Code 100374

Cost Code GACP

Programmes in which module to be offered

Programme title Is the module core or option for this
programme

MSc Computer Science with Cyber Security Core

MSc Computer Science with Software
Engineering

Core

MSc Computer Science with UX Core

Pre-requisites
None

Breakdown of module hours

Learning and teaching hours 15 hrs

Placement tutor support 0 hrs

Supervised learning e.g. practical classes, workshops 0 hrs

Project supervision (level 6 projects and dissertation

modules only)
0 hrs

Total active learning and teaching hours 15 hrs

Placement / work based learning 0 hrs

Guided independent study 135 hrs

Module duration (total hours) 150 hrs

For office use only
Initial approval date 04/09/19

With effect from date 01/01/20

https://www.glyndwr.ac.uk/modules/
https://www.glyndwr.ac.uk/modules/

Module spec template 2023-24

For office use only

Date and details of
revision

27/06/2024 Programme revalidation

Version number 2

Module aims
The module will allow students to understanding and apply the theory and practice of
exploiting vulnerabilities in software as well as key skills of design and implementation of
secure software. Students will learn the ability to implement secure systems and
environments to support software security. Additionally, they will explore the use of secure
programming languages and the effects on secure software. The use obfuscation and
encryption in the protection of software will also be investigated.

Module Learning Outcomes - at the end of this module, students will be able to:

1 Conduct in-depth research to compare and contrast various approaches to software
and system security.

2 Utilise and adapt secure programming techniques effectively. Demonstrate advanced
skills in applying security principles to programming, including the ability to modify and
enhance existing code to meet high standards of security in complex software
environments

3 Critically evaluate different approaches to obfuscation, encryption, and signing within
software and security contexts.

4 Identify and critically evaluate weaknesses in computer software and systems with a
high level of expertise.

5 Select, justify, and document the most appropriate approaches, methods, and
techniques used to secure software.

Assessment
This section outlines the type of assessment task the student will be expected to complete

as part of the module. More details will be made available in the relevant academic year

module handbook.

Indicative Assessment Tasks:

For Assessment 1 students will be given a case study, and asked to identify, document and

present the potential security issues along with planning solutions. This will involve analysing

system documentation and evaluating samples. Throughout the module, students will

develop an understanding of several aspects of secure software development, including

appropriate techniques and design strategies. This will develop their understanding of

appropriate practices and code assessment techniques. This understanding will then be

tested during Assessment 2 in the form of an in-class test with an indicative length of 90

minutes.

Assessment

number

Learning

Outcomes to

be met

Type of assessment Weighting (%)

1 2,3,5 Coursework 70%

2 1,4 In-class test 30%

Module spec template 2023-24

Derogations
None

Learning and Teaching Strategies
The overall learning and teaching strategy is one of guided independent study requiring

ongoing student engagement. Online material will provide the foundation of the learning

resources, requiring the students to log in and engage regularly throughout the eight weeks

of the module. There will be a mix of suggested readings, discussions and interactive

content containing embedded digital media and self-checks for students to complete as they

work through the material and undertake the assessment tasks. A range of digital tools via

the virtual learning environment and additional sources of reading will also be utilised to

accommodate learning styles. There is access to a helpline for additional support and chat

facilities through Canvas for messaging and responding.

Indicative Syllabus Outline

• Memory models.

• Programming bugs and mistakes that lead to vulnerabilities.

• Secure programming languages and frameworks.

• Attacks against software, and other software related attacks: e.g. XSS attacks, SQL

injection, etc.

• Programming for security.

• Software and system protection methods.

‘Secure by design’ development.

Indicative Bibliography:
Please note the essential reads and other indicative reading are subject to annual review
and update.

Essential Reads

License to access SudoCyber online platform.

Other indicative reading

M. Howard, D. LeBlanc, and J. Viega, 24 Deadly Sins of Software Security: Programming

Flaws and How to Fix Them. New York, NY: McGraw-Hill, 2009.

A. Hoffman, Web Application Security: Exploitation and Countermeasures for Modern Web

Applications. Sebastopol, CA: O’Reilly Media, 2020.

S. Azad and A. S. K. Pahtan, Practical Cryptography: Algorithms and Implementations Using

C++. Boca Raton, FL: Taylor & Francis, 2014.

C. Cachin, R. Guerraoui, and L. Rodrigues, Introduction to Reliable and Secure Distributed

Programming. Berlin, Germany: Springer, 2011.

R. C. Seacord, Secure Coding in C and C++. Upper Saddle River, NJ: Addison-Wesley,

2013.

A. Shalloway, S. Bain, K. Pugh, and A. Kolsky, Essential Skills for the Agile Developer: A

Guide to Better Programming and Design. Boston, MA: Addison-Wesley, 2011.

